
A Literature Review of Code Clone Analysis to Improve Software
Maintenance Process

Md. Monzur Morshed* 1, 3, Md. Arifur Rahman2, Salah Uddin Ahmed1

{m.monzur@gmail.com, monzur@scicon.org, monzur@tigerhats.org}
marahman@sce.carleton.ca, suahmed@aiub.edu

Department of Computer Science
American International University-Bangladesh1, Carleton University-Canada2, SCICON & TigerHATS3

Abstract—Software systems are getting more complex as the
system grows where maintaining such system is a primary
concern for the industry. Code clone is one of the factors making
software maintenance more difficult. It is a process of replicating
code blocks by copy-and-paste that is common in software
development. In the beginning stage of the project, developers
find it easy and time consuming though it has crucial drawbacks
in the long run. There are two types of researchers where some
researchers think clones lead to additional changes during
maintenance phase, in later stage increase the overall
maintenance effort. On the other hand, some researchers think
that cloned codes are more stable than non cloned codes. In this
study, we discussed Code Clones and different ideas, methods,
clone detection tools, related research on code clone, case study.

Keywords-Code Clone, Software Maintenance, Clode Detection,
Clone Evolution

I. INTRODUCTION

Code clone is one of the factors that make software
maintenance more difficult [1]. A code clone is a code block
in source files which is identical or similar to another code
block. Code clones concept is of various reasons such as
reusing code by 'code-and-paste' and others which make the
source files very difficult to modify consistently. If faults
found in one code block then the entire cloned blocks need
modification and it becomes more difficult tasks to maintain if
the system becomes big.

Recently, it is pointed out that maintenance phase is the most
expensive one in the entire software development process.
Many research studies have reported that large software
companies spent a lot of cost to maintaining the existing
systems [2]. Maintenance of software system is defined as
modification of a software product after delivery to correct
faults, to improve performance or other attributes, or to adapt
the products to a modified environment [3].

Code clones are the source of heated debates among software
maintenance researchers [4]. Many researchers consider
clones to be harmful [5, 6, 7, 8, 9, 10, 11], due to the belief
that inconsistent changes increase both maintenance effort and
the likelihood of introducing defects. Yet, other researchers do
not find empirical evidence of harm [12, 13], or even establish
cloning as a valuable software engineering method to
overcome language limitations or to specialize common parts
of the code [14, 15, 16, 17]. It is not yet clear which of these
two visions prevails, or whether the right vision depends on
the software system at hand [18, 19, 20].

II. RELATED RESEARCH

Y. Ueda et al. [23] developed a maintenance support
environment based on code clone analysis called Gemini.

Gemini delivers the source files to the code clone detector, and
CCFinder [24] then represents the information of the detected
code clones to the user through various GUIs.

Hotta et al. [32] showed a different approach on the impact of
clones in software maintenance activities to measure the
modification frequencies of the duplicated and non-duplicated
code segments. According to their study, the presence of
clones does not introduce extra difficulties in the maintenance
phase.

M. Kim et al. [33] proposed a model of clone genealogy on
clone evolution. According to their study, refactoring of
clones may not always improve software quality based on the
revisions of two medium sized Java systems during their
study.

Krinke [34] found Type (I) code clones can be changed
consistently during maintenance measured by Simian [35] (a
code clone detector) and diff (a file comparison utility) on
Java, C and C++. He also found that half of lifetime of clone
groups consistently changing.

N. Bettenburg et al. [4] conducted an empirical study on three
large open source software systems on the relation of
inconsistent changes to code clones with software quality, at
the level of official releases. In particular, they addressed the
following four research questions:

(Q1) What are the characteristics of long-lived clone
genealogies at the release level?
(Q2) What is the effect of inconsistent changes to code clones
on code quality when measured at the release level?
(Q3) How does the effect of inconsistent changes to code
clones at the release level compare to finer-grained levels?
(Q4) Which cloning patterns are observed at the release level?

According to R. Koschke et al. [31], there are still several
open fundamental and terminological questions in software
redundancy as follows:

(Q1) What are suitable definitions of similarity for which
purpose?
(Q2) What other categorizations of clones make sense (e.g.,
semantics, origins, risks, etc.)?
(Q3) What is the statistical distribution of clone types?
(Q4) Are there correlations among orthogonal categories?
(Q5) Which strategies of removal and avoidance, risks of
removal, potential damages, root causes, and other factors are
associated with these categories?
(Q6) Can we create a theory of redundancy similar to normal
forms in databases?

III. CODE CLONE ANALYSIS

a.) Definitions on Code Clone

A clone relation is defined as an equivalence relation (i.e.,
reflexive, transitive, and symmetric relation) on code portions
[21]. A clone relation holds between two code portions if (and
only if) they are the same sequences. (Sequences are
sometimes original character strings, strings without white
spaces, sequences of token type, and transformed token
sequences.) For a given clone relation, a pair of code portions
is called clone pair if the clone relation holds between the
portions. An equivalence class of clone relation is called clone
class. That is, a clone class is a maximal set of code portions
in which a clone relation holds between any pair of code
portions [2].

Figure 1: Code clone [22]

Figure 2: Example of Code Clones [31]

Code clone has no single or generic definition. Each
researcher has own definition [22]. Usually clones are
categorized in three types:

Type 1 clone: syntactical equivalence
Type 2 clone: parameterized syntactical equivalence
Type 3 clone: semantic equivalence

b.) Clone Pair and Clone Set

I.) Clone Pair: A pair of identical or similar code fragments
II.) Clone Set: A set of identical or similar fragments

Clone Pair Clone Set

(C1, C2) {C1, C2, C4}

(C1, C4) {C3, C5}

(C2, C4)

(C3, C5)

Figure 3: Clone Pair and Clone Set [22]

c.) Advantages and Applications of Detecting Code Clones

Detects library candidates: Code fragment proves its
usability by coping and reusing multiple times in the system
that can be incorporated in a library and announce its reuse
potential officially [41, 42].

Helps in program understanding: It is possible to get an
overall idea of other files containing similar copies of the
fragment, if the functionality of a cloned fragment is
understood. For example, when we have a piece of code
managing memory we know that all files that contain a copy
must implement a data structure with dynamically allocated
space [43].

Helps aspect mining research: Detecting code clone is also
necessary in aspect mining to detect cross-cutting concerns.
The code of cross-cutting concerns is typically duplicated over
the entire application that could be identified with clone
detection tools [44, 45].

Finds usage patterns: The functional usage patterns of the
cloned fragment can be discovered if all the cloned fragments
of the same source fragments are detected [43].

Detects malicious software: To detect malicious software
clone detection techniques can play a vital role. By comparing
one malicious software to another, it is possible to find the
evidence where parts of the one software system match parts
of another [46].

Detects plagiarism and copyright infringement: Finding
similar code may also useful in detecting plagiarism and
copyright infringement [46, 47, 48].

Helps software evolution research: Clone detection
techniques are successfully used in software evolution analysis
by looking at the dynamic nature of different clones in
different versions of a system [49, 50, 51, 52, 53].

Helps in code compacting: Clone detection techniques can be
used for compact device by reducing the source code size [54,
55].

1 int sum = 0 ;
2
3 void foo (Iteratoriter){
4 for (item = first (iter) ; has more (iter) ; item = next
(iter)) {
5 sum = sum + value (item) ;
6 }
7 }
8 int bar (Iteratoriter){
9 int sum = 0 ;
10 for (item = first (iter) ; has more (iter) ; item = next
(iter)) {
11 sum = sum + value (item) ;
12 }
13 }

d.) Drawbacks of Code Duplication

Apart from beneficiary of code clones, it has severe impact on
the quality, reusability and maintainability of a software
system. The following are the list of some drawbacks of
having cloned code in a system.

Increased probability of bug propagation: If a code
segment contains a bug and that segment is reused by coping
and pasting without or with minor adaptations, the bug of the
original segment may remain in all the pasted segments in the
system and therefore, the probability of bug propagation may
increase significantly in the system [56, 57].

Increased probability of introducing a new bug: In many
cases, only the structure of the duplicated fragment is reused
with the developer's responsibility of adapting the code to the
current need. This process can be error prone and may
introduce new bugs in the system [58, 59].

Increased probability of bad design: Cloning may also
introduce bad design, lack of good inheritance structure or
abstraction. Consequently, it becomes difficult to reuse part of
the implementation in future projects. It also badly impacts on
the maintainability of the software [60].

Increased difficulty in system improvement/modification:
Because of duplicated code in the system, one needs
additional time and attention to understand the existing cloned
implementation and concerns to be adapted, and therefore, it
becomes difficult to add new functionalities in the system, or
even to change existing ones [61, 62].

Increased maintenance cost: If a cloned code segment is
found to be contained a bug, all of its similar counterparts
should be investigated for correcting the bug in question as
there is no guarantee that this bug has been already eliminated
from other similar parts at the time of reusing or during
maintenance. Moreover, When maintaining or enhancing a
piece of code, duplication multiplies the work to be done [60,
62].

Increased resource requirements: Code duplication
introduces higher growth rate of the system size. While system
size may not be a big problem for some domains, others (e.g.,
telecommunication switch or compact devices) may require
costly hardware upgrade with a software upgrade.
Compilation times will increase if more code has to be
translated which has a detrimental effect on the edit-compile-
test cycle. The overall effect of cloning has been described by
Johnson [61] as a form of software aging or "hardening of the
arteries" where even small changes on the architectural level
become very difficult to achieve in the actual code.

IV. CODE CLONE DETECTION TOOLS

Y. Higo et al. [2] developed a maintenance support
environment based on code clone analysis called Gemini. T.
Kamiya et al. [29] developed a code clone detection tool
named CCFinder. Gemini delivers the source files to the code
clone detector CCFinder, and then shows the information of
the detected code clones to the user through various GUIs.

Code Clone detection of CCFinder is a process in which the
input is source files and the output is clone pairs [2].

V. METHODOLOGY PROPOSED BY RESEARCHERS

Methodology I

Y. Higo et al. [2] applied Gemini and CCFinder to several
commercial software products in a case study where the users
reported some problems as feedback and two problems were
repeatedly reported and serious ones.

a.) The first problem shows itself in the case of 'copy-and-
paste' reuse as the developers used the modified code portion.
In the modification, developers also modified the user-defined
identifiers in the code portion. In such case, the developers can
subjectively identify the code clones even if they include some
gaps among them where as CCFinder detects the clone as
several short code clones separately. On the other hand, if the
developers set a small value to the minimum length, then a lot
of code clones are detected and practically the information is
of no use [2]. Y. Ueda et al, [25] proposed the solution of this
problem by referring to a certain set of gapped clones by
representing renamed/modified code portions and gaps
themselves on scatter plot.

b.) The Second problem shows itself if the developers detect
code clones for refactoring [26], sometime semantically
cohesive ones has more important meaning that maximal (just
longest in local) ones although the formers may be shorter
than the letters [2]. Their experiments found many clones that
have not only primary logic statements but also the other
coincidental clone statements before (and/or behind) them,
since simple statements, such as assignment or variable
declaration, tend to become clones coincidentally.

R. Komondoor et al. [27] and J. Krinke et al, [28] their
approaches detect semantically cohesive code clones using
program dependence graph (PDG) for procedure extraction.
Since the cost to create PDG is very high and there are no
examples exists based on their approaches to large scale
software system. On the other hand, the clone detection
process of CCFinder is very fast though lexical analysis can
only be performed. So, the detected clones are not always
semantically cohesive rather the clones are just maximal. As a
result, the user of CCFinder has to extract semantically
cohesive portions manually from the maximal. They solved
this problem by a two-step approach in which they firstly
detect maximal clones and secondly extract semantically
cohesive ones from the results. Using this approach in real
time they detect code clones that are easy to be reused [2].

Methodology II

S. Schulze et al. [30] showed two-staged approach to support
code clone removal process. In the first stage, a detailed
analysis of detected code clones is performed. In the second
stage, the focus will be on how the results of stage 1 can be
presented in order to guide an interactive refactoring/clone-
removal process.

a.) The Analysis Stage encapsulates a detailed analysis process
which is divided into one preprocessing and multiple post

processing steps. The inputs for this stage are the detection
results of existing code clone detection tools. They used
CCFinder as code clone detector but according to them other
tools can also be used. In the preprocessing, they merged code
clones that have been detected to be similar to each other, to
clone classes. After that, they classify these clone classes
regarding the type of the cloned artifacts such as functions,
loops etc. Finally, they investigated the clone classes which
can be decomposed into smaller close classes. In case of
finding, they divided the affected clone class [30].

b.) The result handling stage presents the gathered information
of the analysis stage to the user. Therefore, it is important to
provide the user with different views on clones as well as with
abstract information on every clone's origin, based on that
users can decide whether to remove them or not [30].

VI. CODE CLONE CASE STUDIES BY RESEARCHERS

Case Study I

C. Kasper et al. [36] profiled the code cloning activity within a
large software system Linux Operating System's Kernel that is
widely used in industry. They profiled the code cloning
activity to know more deeply how and why developers clone
codes to enhance code clone detection process and code clone
elimination strategies. They categorized different types of
cloning activity based on the attributes such as location and
size based on manual inspection of code clones found in the
system. Their study produced a taxonomy of code cloning that
will help other to examine code cloning. They used two
methods to gather code clone information from the system.
Firstly, they applied parameterized string matching that is
implemented in CCFinder. Secondly, they applied metrics
based code detection for which they used C/C++ to obtain raw
metric information, as well as a set of Python scripts created to
perform the code clone analysis.

Case Study II

E. Choi et al. [37] proposed a method to extract code clones
for refactoring using clone metrics. They showed the
usefulness of their proposed method based on a survey among
developers in NEC Corporation. According to the feedback, it
turned out their proposed method using combined clone
metrics is effective method to extract code clones for
refactoring [38]. Due to the time limitation, they conducted
their previous study [37] on a single system. Therefore, their
method may not generalize to other software systems. E.
CHOI et al. [38] applied their proposed method [37] to open
source software system and discussed their findings. In their
study, they used two open source Java projects: Apache Ant
[39] and JBoss [40] as their target systems. They also used
CCFinder to detect code clone and 30 tokens as the minimum
token length of a code clone as they followed the settings of
previous study. According to their research results the
conclusion of their case study says several clone sets are
inappropriate for refactoring.

VII. CONCLUSION & FUTURE WORK

In this paper, we conducted a literature review on code clone
analysis to improve software maintenance process. We

discussed several methods [2, 30] proposed by researchers to
enhance code clone maintenance process. We also discussed
advantages and drawbacks of code clone along with two case
studies [36, 38] and the outcome of those case studies. As
future work, we are planning to perform case studies of
different open source projects and apply several methods that
are proposed in several code clone studies.

REFERENCES

[1] M. Fowler, Refactoring: improving the design of existing code, Addison
Wesley, 1999.

[2] Yoshiki Higo, Yasushi Ueda, Toshihro Kamiya, Shinji Kusumoto,
Katsuro Inoue, "On Software Maintenance Process Improvement Based
On Code Clone Analysis".

[3] Pigoski T. M, Maintenance, Encyclopedia of Software Engineering, 1,
John Wiley & Sons, 1994.

[4] Nicolas Bettenburg, Weiyi Shang, Walid M. Ibrahim, Bram Adams,
Ying Zou,Ahmed E. Hassan, "An empirical study on inconsistent
changes to code clones at the release level", Journal Science of
Computer Programming, pp. 1-17

[5] B.S. Baker, On finding duplication and near-duplication in large
software systems, in: WCRE’95: Proceedings of the 2nd Working
Conference on Reverse Engineering, IEEE Computer Society, 1995, pp.
86.

[6] I.D. Baxter, A. Yahin, L.M. de Moura, M. Sant’Anna, L. Bier, Clone
detection using abstract syntax trees, in: ICSM’98: Proceedings of the
14th IEEE International Conference on Software Maintenance, IEEE
Computer Society, 1998, pp. 368–377.

[7] R. Geiger, B. Fluri, H.C. Gall, M. Pinzger, Relation of code clones and
change couplings, in: FASE’06: Proceedings of the 9th International
Conference of Funtamental Approaches to Software Engineering,
Springer, 2006, pp. 411–425.

[8] E. Juergens, F. Deissenboeck, B. Hummel, S. Wagner, Do code clones
matter? in: ICSE’09: Proceedings of the 2009 IEEE 31st International
Conference on Software Engineering, IEEE Computer Society, 2009,
pp. 485–495.

[9] T. Kamiya, S. Kusumoto, K. Inoue, Ccfinder: a multilinguistic token-
based code clone detection system for large scale source code, IEEE
Transactions on Software Engineering 28 (7) (2002) 654–670.

[10] K. Kontogiannis, R. de Mori, E. Merlo, M. Galler, M. Bernstein, Pattern
matching for clone and concept detection, Automated Software
Engineering 3 (1–2) (1996) 77–108.

[11] A. Lozano, M. Wermelinger, Assessing the effect of clones on
changeability, in: ICSM’08: Proceedings of the 24th IEEE International
Conference on Software Maintenance, IEEE, 2008, pp. 227–236.

[12] F. Rahman, C. Bird, P.T. Devanbu, Clones: what is that smell? in:
MSR’10: Proceedings of the 7th IEEE Working Conference on Mining
Software Repositories, IEEE, 2010, pp. 72–81.

[13] S. Thummalapenta, L. Cerulo, L. Aversano, M.D. Penta, An empirical
study on the maintenance of source code clone, Empirical Software
Engineering 15 (1) (2010) 1–34.

[14] E. Duala-Ekoko, M.P. Robillard, Tracking code clones in evolving
software, in: ICSE’07: Proceedings of the 29th International Conference
on Software Engineering, IEEE Computer Society, 2007, pp. 158–167.

[15] C. Kapser, M.W. Godfrey, Cloning considered harmful considered
harmful, in: WCRE’06: Proceedings of the 13th Working Conference on
Reverse Engineering, IEEE Computer Society, 2006, pp. 19–28.

[16] C. Kapser, M.W. Godfrey, Supporting the analysis of clones in software
systems: research articles, Journal of Software Maintenance and
Evolution 18 (2) (2006) 61–82.

[17] M. Kim, V. Sazawal, D. Notkin, G. Murphy, An empirical study of code
clone genealogies, in: ESEC/FSE-13: Proceedings of the 10th European
Software Engineering Conference Held Jointly with 13th ACM
SIGSOFT International Symposium on Foundations of Software
Engineering, ACM, 2005, pp. 187–196.

[18] N. Göde, Evolution of type-1 clones, in: SCAM’09: Proceedings of the
2009 Ninth IEEE International Working Conference on Source Code
Analysis and Manipulation, IEEE Computer Society, 2009, pp. 77–86.

[19] C.K. Roy, J.R. Cordy, Near-miss function clones in open source
software: an empirical study, Journal of Software Maintenance and
Evolution: Research and Practice 22 (3) (2010) 165–189.

[20] S. Thummalapenta, L. Cerulo, L. Aversano, M.D. Penta, An empirical
study on the maintenance of source code clone, Empirical Software
Engineering 15 (1) (2010) 1–34.

[21] T. Kamiya, S. Kusumoto, and K. Inoue, CCFinder: A multi-linguistic
tokenbased code clone detection system for large scale source code
IEEE Transactions on Software Engineering, 28(7):654-670, 2002.

[22] Katsuro Inoue, "Code Clone Analysis and Its Application", Software
Engineering Lab, Osaka University

[23] Y. Ueda, T. Kamiya, S. Kusumoto, K. Inoue, Gemini: Maintenance
Support Environment Based on Code Clone Analysis, 8th International
Symposium on Software Metrics, pages 67-76, June 4-7, 2002.

[24] T. Kamiya, S. Kusumoto, and K. Inoue, CCFinder: A multi-linguistic
tokenbased code clone detection system for large scale source code
IEEE Transactions on Software Engineering, 28(7):654-670, 2002.

[25] Y. Ueda, T. Kamiya, S. Kusumoto, K. Inoue, On Detection of Gapped
Code Clones using Gap Locations, 9th Asia-Pacific Software
Engineering Conference, 2002

[26] M. Fowler, Refactoring: improving the design of existing code, Addison
Wesley, 1999

[27] R. Komondoor and S. Horwitz, Using slicing to identify duplication in
source code, In Proc. of the 8th International Symposium on Static
Analysis, Paris, France, July 16-18, 2001

[28] Jens Krinke, Identifying Similar Code with Program Dependence
Graphs, In Proc. of the 8th Working Conference on Reverse
Engineering, 2001

[29] T. Kamiya, S. Kusumoto, and K. Inoue, CCFinder: A multi-linguistic
tokenbased code clone detection system for large scale source code
IEEE Transactions on Software Engineering, 28(7):654-670, 2002

[30] Sandro Schulze, Martin Kuhlemann, "Advanced Analysis for Code
Clone Removal", University of Magdeburg, Germany

[31] Rainer Koschke, "Survey of Research on Software Clones", Dagstuhl
Seminar Proceedings

[32] K. Hotta, Y. Sano, Y. Higo, S. Kusumoto, “Is Duplicate Code More
Frequently Modified than Non-duplicate Code in Software Evolution?
An Empirical Study on Open Source Software,” Proc. EVOL/IWPSE,
2010, pp. 73–82

[33] M. Kim, V. Sazawal, D. Notkin, and G. C. Murphy, “An empirical study
of code clone genealogies,” Proc. ESEC-FSE, 2005, pp. 187–196

[34] J. Krinke, “A study of consistent and inconsistent changes to code
clones,” Proc of WCRE, 2007, pp. 170–178

[35] Simian similarity analyser.
http://www.redhillconsulting.com.au/products/simian/

[36] Cory Kapser, Michael W. Godfrey, "Toward a Taxonomy of Clones in
Source Code: A Case Study”

[37] E. Choi, N. Yoshida, T. Ishio, K. Inoue, and T. Sano, "Extracting code
clones for refactoring using combinations of clone metrics". In Proc. of
the IWSC 2011, pages 7-13, 2011

[38] Eunjong Choi, Norihiro Yoshida, Takashi Ishio, Katsuro Inoue, Tateki
Sano, "Finding Code Clones for Refactoring with Clone Metrics: A Case
Study of Open Source Software", Technical Report of IEICE

[39] The Apache Ant Project. http://ant.apache.org
[40] JBoss Application Server. http://www.jboss.org
[41] Neil Davey, Paul Barson, Simon Field, Ray J Frank. The Development

of a Software Clone Detector. International Journal of Applied Software
Technology, Vol. 1(3/4):219-236, 1995

[42] Elizabeth Burd and Malcolm Munro. Investigating the maintenance
implications of the replication of code. In Proceedings of the 13th
International Conference on Software Maintenance (ICSM'97), Bari,
Italy, September 1997

[43] Matthias Rieger. Effective Clone Detection Without Language Barriers.
Ph.D. Thesis, University of Bern, Switzerland, June 2005

[44] Magiel Bruntink. Aspect Mining using Clone Class Metrics. In
Proceedings of the 1st Workshop on Aspect Reverse Engineering, 2004

[45] Magiel Bruntink, Arie van Deursen, Remco van Engelen, Tom Tourwe.
On the Use of Clone Detection for Identifying Crosscutting Concern
Code. Transactions on Software Engineering, Volume 31(10):804-818,
October 2005

[46] Andrew Walenstein and Arun Lakhotia. The Software Similarity
Problem in Malware Analysis. In Proceedings Dagstuhl Seminar 06301:
Duplication, Redundancy, and Similarity in Software, 10 pp., Dagstuhl,
Germany, July 2006

[47] Brenda Baker. On Finding Duplication and Near-Duplication in Large
Software Systems. In Proceedings of the Second Working Conference
on Reverse Engineering (WCRE'95), pp. 86-95, Toronto, Ontario,
Canada, July 1995

[48] Toshihiro Kamiya, Shinji Kusumoto, Katsuro Inoue. CCFinder: A
Multilinguistic Token-Based Code Clone Detection System for Large
Scale Source Code. Transactions on Software Engineering, Vol. 28(7):
654- 670, July 2002

[49] Giuliano Antoniol, Gerardo Casazza, Massimiliano Di Penta, Ettore
Merlo. Modeling Clones Evolution through Time Series. In Proceedings
of the 17th IEEE International Conference on Software Maintenance
(ICSM'01), pp. 273-280, Florence, Italy, November 2001

[50] G. Antoniol, U. Villano, E. Merlo, and M.D. Penta. Analyzing cloning
evolution in the linux kernel. Information and Software Technology, 44
(13):755-765, 2002

[51] M.W. Godfrey, D. Svetinovic, and Q. Tu. Evolution, growth, and
cloning in Linux: A case study. In CASCON workshop on Detecting
duplicated and near duplicated structures in large software systems:
Methods and applications, October 2000

[52] Ekwa Duala-Ekoko, Martin Robillard. Tracking Code Clones in
Evolving Software. In Proceedings of the International Conference on
Software Engineering (ICSE'07), pp.158-167, Minneapolis, Minnesota,
USA, May 2007

[53] E. Merlo, M. Dagenais, P. Bachand, J.S. Sormani, S. Gradara, and G.
Antoniol. Investigating large software system evolution: the linux
kernel. In Proceedings of the 26th International Computer Software and
Applications Conference (COMPSAC'02), pp. 421426, Oxford,
England, August 2002

[54] W-K. Chen, B. Li, and R. Gupta. Code Compaction of Matching Single-
Entry Multiple-Exit Regions. In Proceedings of the 10th Annual
International Static Analysis Symposium (SAS'03), pp. 401-417, San
Diego, CA, USA, June 2003

[55] Saumya K. Debray, William Evans, Robert Muth, and Bjorn De Sutter.
Compiler techniques for code compaction. ACM Transactions on
Programming Languages and Systems (TOPLAS'00), Vol. 22(2):378-
415, March 2000

[56] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. CP-Miner:
Finding Copy-Paste and Related Bugs in Large-Scale Software Code. In
IEEE Transactions on Software Engineering, Vol. 32(3): 176-192,
March 2006

[57] J Howard Johnson. Identifying Redundancy in Source Code Using
Fingerprints. In Proceeding of the 1993 Conference of the Centre for
Advanced Studies Conference (CASCON'93), pp. 171-183, Toronto,
Canada, October 1993

[58] J Howard Johnson. Navigating the textual redundancy Web in legacy
source. In Proceedings of the 1996 Conference of the Centre for
Advanced Studies on Collaborative Research (CASCON'96), pp. 7-16,
Toronto, Canada, October 1996

[59] Ira Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant Anna. Clone
Detection Using Abstract Syntax Trees. In Proceedings of the 14th
International Conference on Software Maintenance (ICSM'98), pp. 368-
377, Bethesda, Maryland, November 1998

[60] Akito Monden, Daikai Nakae, Toshihiro Kamiya, Shin-ichi Sato, Ken-
ichi Matsumoto. Software quality analysis by code clones in industrial
legacy software. In Proceedings of 8th IEEE International Symposium
on Software Metrics (METRICS'02), pp. 87-94, Ottawa, Canada, June
2002

[61] John Johnson. Substring Matching for Clone Detection and Change
Tracking. In Proceedings of the 10th International Conference on
Software Maintenance, pp. 120-126, Victoria, British Columbia,
Canada, September 1994

[62] Jean Mayrand, Claude Leblanc, Ettore Merlo. Experiment on the
Automatic Detection of Function Clones in a Software System Using
Metrics. In Proceedings of the 12th International Conference on
Software Maintenance (ICSM'96), pp. 244-253, Monterey, CA, USA,
November 1996

	Introduction
	Related Research
	Code Clone Analysis
	Code Clone Detection Tools
	Methodology proposed by Researchers
	Code Clone Case studies by Researchers
	Conclusion & Future Work
	References

