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Abstract—Software systems are getting more complex as the 
system grows where maintaining such system is a primary 
concern for the industry. Code clone is one of the factors making 
software maintenance more difficult. It is a process of replicating 
code blocks by copy-and-paste that is common in software 
development. In the beginning stage of the project, developers 
find it easy and time consuming though it has crucial drawbacks 
in the long run. There are two types of researchers where some 
researchers think clones lead to additional changes during 
maintenance phase, in later stage increase the overall 
maintenance effort. On the other hand, some researchers think 
that cloned codes are more stable than non cloned codes. In this 
study, we discussed Code Clones and different ideas, methods, 
clone detection tools, related research on code clone, case study. 
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I.  INTRODUCTION  
 

Code clone is one of the factors that make software 
maintenance more difficult [1]. A code clone is a code block 
in source files which is identical or similar to another code 
block. Code clones concept is of various reasons such as 
reusing code by 'code-and-paste' and others which make the 
source files very difficult to modify consistently. If faults 
found in one code block then the entire cloned blocks need 
modification and it becomes more difficult tasks to maintain if 
the system becomes big.  
 
Recently, it is pointed out that maintenance phase is the most 
expensive one in the entire software development process. 
Many research studies have reported that large software 
companies spent a lot of cost to maintaining the existing 
systems [2]. Maintenance of software system is defined as 
modification of a software product after delivery to correct 
faults, to improve performance or other attributes, or to adapt 
the products to a modified environment [3].  
 
Code clones are the source of heated debates among software 
maintenance researchers [4]. Many researchers consider 
clones to be harmful [5, 6, 7, 8, 9, 10, 11], due to the belief 
that inconsistent changes increase both maintenance effort and 
the likelihood of introducing defects. Yet, other researchers do 
not find empirical evidence of harm [12, 13], or even establish 
cloning as a valuable software engineering method to 
overcome language limitations or to specialize common parts 
of the code [14, 15, 16, 17]. It is not yet clear which of these 
two visions prevails, or whether the right vision depends on 
the software system at hand [18, 19, 20].  

 
II. RELATED RESEARCH 

 
Y. Ueda et al. [23] developed a maintenance support 
environment based on code clone analysis called Gemini. 

Gemini delivers the source files to the code clone detector, and 
CCFinder [24] then represents the information of the detected 
code clones to the user through various GUIs. 
 
Hotta et al. [32] showed a different approach on the impact of 
clones in software maintenance activities to measure the 
modification frequencies of the duplicated and non-duplicated 
code segments. According to their study, the presence of 
clones does not introduce extra difficulties in the maintenance 
phase.  
 
M. Kim et al. [33] proposed a model of clone genealogy on 
clone evolution. According to their study, refactoring of 
clones may not always improve software quality based on the 
revisions of two medium sized Java systems during their 
study.  
 
Krinke [34] found Type (I) code clones can be changed 
consistently during maintenance measured by Simian [35] (a 
code clone detector) and diff (a file comparison utility) on 
Java, C and C++. He also found that half of lifetime of clone 
groups consistently changing.    
 
N. Bettenburg et al. [4] conducted an empirical study on three 
large open source software systems on the relation of 
inconsistent changes to code clones with software quality, at 
the level of official releases. In particular, they addressed the 
following four research questions: 
 
(Q1) What are the characteristics of long-lived clone 
genealogies at the release level? 
(Q2) What is the effect of inconsistent changes to code clones 
on code quality when measured at the release level? 
(Q3) How does the effect of inconsistent changes to code 
clones at the release level compare to finer-grained levels? 
(Q4) Which cloning patterns are observed at the release level? 
 
According to R. Koschke et al. [31], there are still several 
open fundamental and terminological questions in software 
redundancy as follows: 
 
(Q1) What are suitable definitions of similarity for which 
purpose? 
(Q2) What other categorizations of clones make sense (e.g., 
semantics, origins, risks, etc.)? 
(Q3) What is the statistical distribution of clone types? 
(Q4) Are there correlations among orthogonal categories? 
(Q5) Which strategies of removal and avoidance, risks of 
removal, potential damages, root causes, and other factors are 
associated with these categories? 
(Q6) Can we create a theory of redundancy similar to normal 
forms in databases? 
 



III. CODE CLONE ANALYSIS 
 

a.) Definitions on Code Clone 
 
A clone relation is defined as an equivalence relation (i.e., 
reflexive, transitive, and symmetric relation) on code portions 
[21]. A clone relation holds between two code portions if (and 
only if) they are the same sequences. (Sequences are 
sometimes original character strings, strings without white 
spaces, sequences of token type, and transformed token 
sequences.) For a given clone relation, a pair of code portions 
is called clone pair if the clone relation holds between the 
portions. An equivalence class of clone relation is called clone 
class. That is, a clone class is a maximal set of code portions 
in which a clone relation holds between any pair of code 
portions [2]. 
 

 
 

Figure 1: Code clone [22] 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Example of Code Clones [31] 

 
Code clone has no single or generic definition. Each 
researcher has own definition [22]. Usually clones are 
categorized in three types: 
 
Type 1 clone: syntactical equivalence 
Type 2 clone: parameterized syntactical equivalence  
Type 3 clone: semantic equivalence 
 
b.) Clone Pair and Clone Set 
 
I.) Clone Pair: A pair of identical or similar code fragments 
II.) Clone Set: A set of identical or similar fragments 

 
 

Clone Pair Clone Set 

(C1, C2) {C1, C2, C4} 

(C1, C4) {C3, C5} 

(C2, C4)  

(C3, C5)  

 
Figure 3: Clone Pair and Clone Set [22] 

 
c.) Advantages and Applications of Detecting Code Clones 
 
Detects library candidates: Code fragment proves its 
usability by coping and reusing multiple times in the system 
that can be incorporated in a library and announce its reuse 
potential officially [41, 42]. 
 
Helps in program understanding: It is possible to get an 
overall idea of other files containing similar copies of the 
fragment, if the functionality of a cloned fragment is 
understood. For example, when we have a piece of code 
managing memory we know that all files that contain a copy 
must implement a data structure with dynamically allocated 
space [43]. 
 
Helps aspect mining research: Detecting code clone is also 
necessary in aspect mining to detect cross-cutting concerns. 
The code of cross-cutting concerns is typically duplicated over 
the entire application that could be identified with clone 
detection tools [44, 45]. 
 
Finds usage patterns: The functional usage patterns of the 
cloned fragment can be discovered if all the cloned fragments 
of the same source fragments are detected [43]. 
 
Detects malicious software: To detect malicious software 
clone detection techniques can play a vital role. By comparing 
one malicious software to another, it is possible to find the 
evidence where parts of the one software system match parts 
of another [46]. 
 
Detects plagiarism and copyright infringement: Finding 
similar code may also useful in detecting plagiarism and 
copyright infringement [46, 47, 48]. 
 
Helps software evolution research: Clone detection 
techniques are successfully used in software evolution analysis 
by looking at the dynamic nature of different clones in 
different versions of a system [49, 50, 51, 52, 53]. 
 
Helps in code compacting: Clone detection techniques can be 
used for compact device by reducing the source code size [54, 
55]. 
 

1 int sum = 0 ; 
2 
3 void foo ( Iteratoriter ){ 
4 for ( item = first ( iter ) ; has more ( iter ) ; item = next 
( iter ) ) { 
5 sum = sum + value ( item ) ; 
6 } 
7 } 
8 int bar ( Iteratoriter ){ 
9 int sum = 0 ; 
10 for ( item = first ( iter ) ; has more ( iter ) ; item = next 
( iter ) ) { 
11 sum = sum + value ( item ) ; 
12 } 
13 } 

 



d.) Drawbacks of Code Duplication 
 
Apart from beneficiary of code clones, it has severe impact on 
the quality, reusability and maintainability of a software 
system. The following are the list of some drawbacks of 
having cloned code in a system. 
 
Increased probability of bug propagation: If a code 
segment contains a bug and that segment is reused by coping 
and pasting without or with minor adaptations, the bug of the 
original segment may remain in all the pasted segments in the 
system and therefore, the probability of bug propagation may 
increase significantly in the system [56, 57]. 
 
Increased probability of introducing a new bug: In many 
cases, only the structure of the duplicated fragment is reused 
with the developer's responsibility of adapting the code to the 
current need. This process can be error prone and may 
introduce new bugs in the system [58, 59]. 
 
Increased probability of bad design: Cloning may also 
introduce bad design, lack of good inheritance structure or 
abstraction. Consequently, it becomes difficult to reuse part of 
the implementation in future projects. It also badly impacts on 
the maintainability of the software [60]. 
 
Increased difficulty in system improvement/modification: 
Because of duplicated code in the system, one needs 
additional time and attention to understand the existing cloned 
implementation and concerns to be adapted, and therefore, it 
becomes difficult to add new functionalities in the system, or 
even to change existing ones [61, 62]. 
 
Increased maintenance cost: If a cloned code segment is 
found to be contained a bug, all of its similar counterparts 
should be investigated for correcting the bug in question as 
there is no guarantee that this bug has been already eliminated 
from other similar parts at the time of reusing or during 
maintenance. Moreover, When maintaining or enhancing a 
piece of code, duplication multiplies the work to be done [60, 
62]. 
 
Increased resource requirements: Code duplication 
introduces higher growth rate of the system size. While system 
size may not be a big problem for some domains, others (e.g., 
telecommunication switch or compact devices) may require 
costly hardware upgrade with a software upgrade. 
Compilation times will increase if more code has to be 
translated which has a detrimental effect on the edit-compile-
test cycle. The overall effect of cloning has been described by 
Johnson [61] as a form of software aging or "hardening of the 
arteries" where even small changes on the architectural level 
become very difficult to achieve in the actual code. 
 

IV. CODE CLONE DETECTION TOOLS  
 

Y. Higo et al. [2] developed a maintenance support 
environment based on code clone analysis called Gemini. T. 
Kamiya et al. [29] developed a code clone detection tool 
named CCFinder. Gemini delivers the source files to the code 
clone detector CCFinder, and then shows the information of 
the detected code clones to the user through various GUIs. 

Code Clone detection of CCFinder is a process in which the 
input is source files and the output is clone pairs [2]. 
   

V. METHODOLOGY PROPOSED BY RESEARCHERS 
 
Methodology I  
 
Y. Higo et al. [2] applied Gemini and CCFinder to several 
commercial software products in a case study where the users 
reported some problems as feedback and two problems were 
repeatedly reported and serious ones.  
 
a.) The first problem shows itself in the case of 'copy-and-
paste' reuse as the developers used the modified code portion. 
In the modification, developers also modified the user-defined 
identifiers in the code portion. In such case, the developers can 
subjectively identify the code clones even if they include some 
gaps among them where as CCFinder detects the clone as 
several short code clones separately. On the other hand, if the 
developers set a small value to the minimum length, then a lot 
of code clones are detected and practically the information is 
of no use [2]. Y. Ueda et al, [25] proposed the solution of this 
problem by referring to a certain set of gapped clones by 
representing renamed/modified code portions and gaps 
themselves on scatter plot.  
 
b.) The Second problem shows itself if the developers detect 
code clones for refactoring [26], sometime semantically 
cohesive ones has more important meaning that maximal (just 
longest in local) ones although the formers may be shorter 
than the letters [2]. Their experiments found many clones that 
have not only primary logic statements but also the other 
coincidental clone statements before (and/or behind) them, 
since simple statements, such as assignment or variable 
declaration, tend to become clones coincidentally. 
 
R. Komondoor et al. [27] and J. Krinke et al, [28] their 
approaches detect semantically cohesive code clones using 
program dependence graph (PDG) for procedure extraction. 
Since the cost to create PDG is very high and there are no 
examples exists based on their approaches to large scale 
software system. On the other hand, the clone detection 
process of CCFinder is very fast though lexical analysis can 
only be performed. So, the detected clones are not always 
semantically cohesive rather the clones are just maximal. As a 
result, the user of CCFinder has to extract semantically 
cohesive portions manually from the maximal. They solved 
this problem by a two-step approach in which they firstly 
detect maximal clones and secondly extract semantically 
cohesive ones from the results. Using this approach in real 
time they detect code clones that are easy to be reused [2].     
 
Methodology II 
 
S. Schulze et al. [30] showed two-staged approach to support 
code clone removal process. In the first stage, a detailed 
analysis of detected code clones is performed. In the second 
stage, the focus will be on how the results of stage 1 can be 
presented in order to guide an interactive refactoring/clone-
removal process. 
 
a.) The Analysis Stage encapsulates a detailed analysis process 
which is divided into one preprocessing and multiple post 



processing steps. The inputs for this stage are the detection 
results of existing code clone detection tools. They used 
CCFinder as code clone detector but according to them other 
tools can also be used. In the preprocessing, they merged code 
clones that have been detected to be similar to each other, to 
clone classes. After that, they classify these clone classes 
regarding the type of the cloned artifacts such as functions, 
loops etc. Finally, they investigated the clone classes which 
can be decomposed into smaller close classes. In case of 
finding, they divided the affected clone class [30]. 
 
b.) The result handling stage presents the gathered information 
of the analysis stage to the user. Therefore, it is important to 
provide the user with different views on clones as well as with 
abstract information on every clone's origin, based on that 
users can decide whether to remove them or not [30]. 
 

VI. CODE CLONE  CASE STUDIES BY RESEARCHERS 
 
Case Study I  
 
C. Kasper et al. [36] profiled the code cloning activity within a 
large software system Linux Operating System's Kernel that is 
widely used in industry. They profiled the code cloning 
activity to know more deeply how and why developers clone 
codes to enhance code clone detection process and code clone 
elimination strategies. They categorized different types of 
cloning activity based on the attributes such as location and 
size based on manual inspection of code clones found in the 
system. Their study produced a taxonomy of code cloning that 
will help other to examine code cloning. They used two 
methods to gather code clone information from the system. 
Firstly, they applied parameterized string matching that is 
implemented in CCFinder. Secondly, they applied metrics 
based code detection for which they used C/C++ to obtain raw 
metric information, as well as a set of Python scripts created to 
perform the code clone analysis. 
 
Case Study II 
 
E. Choi et al. [37] proposed a method to extract code clones 
for refactoring using clone metrics. They showed the 
usefulness of their proposed method based on a survey among 
developers in NEC Corporation. According to the feedback, it 
turned out their proposed method using combined clone 
metrics is effective method to extract code clones for 
refactoring [38]. Due to the time limitation, they conducted 
their previous study [37] on a single system. Therefore, their 
method may not generalize to other software systems. E. 
CHOI et al. [38] applied their proposed method [37] to open 
source software system and discussed their findings. In their 
study, they used two open source Java projects: Apache Ant 
[39] and JBoss [40] as their target systems. They also used 
CCFinder to detect code clone and 30 tokens as the minimum 
token length of a code clone as they followed the settings of 
previous study. According to their research results the 
conclusion of their case study says several clone sets are 
inappropriate for refactoring.    

 
VII. CONCLUSION & FUTURE WORK 

 
In this paper, we conducted a literature review on code clone 
analysis to improve software maintenance process. We 

discussed several methods [2, 30] proposed by researchers to 
enhance code clone maintenance process. We also discussed 
advantages and drawbacks of code clone along with two case 
studies [36, 38] and the outcome of those case studies. As 
future work, we are planning to perform case studies of 
different open source projects and apply several methods that 
are proposed in several code clone studies. 
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